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ABSTRACT
Differentially private (DP) learning, notably DP stochastic gradient

descent (DP-SGD), has limited applicability in fine-tuning gigantic

pre-trained language models (LMs) for natural language processing

tasks. The culprit is the perturbation of gradients (as gigantic as

entire models), leading to significant efficiency and accuracy drops.

We show how to achieve metric-based local DP (LDP) by sanitiz-

ing (high-dimensional) sentence embedding, extracted by LMs and

much smaller than gradients. For potential utility improvement, we

impose a consistency constraint on the sanitization. We explore two

approaches: One is brand new and can directly output consistent

noisy embeddings; the other is an upgradation with post-processing.
To further mitigate “the curse of dimensionality,” we introduce two

trainable linear maps for mediating dimensions without hurting pri-

vacy or utility. Our protection can effectively defend against privacy

threats on embeddings. It also naturally extends to inference.

Our experiments
1
show that we reach the non-private accuracy

under properly configured parameters, e.g., 0.92 for SST-2 with a

privacy budget 𝜖 = 10 and the reduced dimension as 16. We also

sanitize the label for LDP (with another small privacy budget) with

limited accuracy losses to fully protect every sequence-label pair.
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1 INTRODUCTION
Recent advancement in deep learning has led to notable success in

natural language processing (NLP), remarkably boosting gigantic

pre-trained language models (LMs) such as BERT [15] and GPT [45]

and pushing the state of the art in countless NLP tasks. But it comes

with a catch. Even publicly available pre-training corpora may have

private information (e.g., SSNs, addresses) [10], let alone those con-
tributed by individuals for fine-tuning sensitive tasks. For example,

Carlini et al. [9, 10] show that LMs can (unintentionally) “memorize”

pre-training data, thus vulnerable to membership inference attacks

(MIAs) [47] – whether an example is used for training. Even worse,

they extract verbatim text sequences with only black-box access to

GPT-2. Lehman et al. [28] can recover patient names and related

conditions from BERT fine-tuned on a private medical corpus.

Differential privacy (DP) [16] limits the impact of any individ-

ual’s contribution, hence mitigating MIAs or data extraction for an

adversary with any prior knowledge. It can also complement cryp-

tographic solutions, e.g., inference (single [39] or multi-server [52])

or secure multi-party computation [7, 25]. To train models with

DP, a classic approach is differentially-private stochastic gradient

descent (DP-SGD) [1]: For each step, it first clips per-example gradi-

ents in a batch and then adds Gaussian noise to the aggregated one.

Due to its popularity and generalizability, it has been integrated

into mainstream machine/deep learning frameworks, such as Opa-

cus for PyTorch. Applying it to fine-tune LM-based NLP pipelines

attains example-level privacy [29, 63, 64], assuming each individual

contributes only one training example (or a sequence-label pair).

Unfortunately, DP-SGD often adopts a trusted party or utilizes se-
cure aggregation [11, 38] with extra costs and trust assumptions [50]

to curate individuals’ sensitive training data, offering central DP [1]

at its core. Also, computing and storing per-example gradients as

large as entire pipelines (e.g., >110M parameters for BERT-base [15])

are costly, making it challenging to strike a nice privacy-utility bal-

ance. For example, the slowdown can be up to 100× of standard

training [9], and the averaged accuracy of four NLP tasks fine-tuned

by DP-SGD at a moderate privacy regime is 68.5% vs. 91.8% without

DP [63, Table 4]. Last but not least, due to the gradient perturbation

in back-propagation, DP-SGD cannot be extended to protect the

test data or defend against privacy attacks [41, 48] beyond MIAs.

1.1 Technical Overview and Challenges
Local DP for (high-dimensional) text data.We consider a more

practical setting: Individuals can perturb their data locally to ensure

local DP (LDP) [27] before being shared with an untrusted server for
fine-tuning/inference, which naturally fits federated learning [34].

Yet, the standard LDP [27] may be too strong, “remembering almost

nothing” about the inputs, e.g., no matter how unrelated the two

https://doi.org/10.1145/3543507.3583512
https://doi.org/10.1145/3543507.3583512
https://github.com/xiangyue9607/Sentence-LDP
https://doi.org/10.1145/3543507.3583512
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input sequences are, the output distributions are statistically similar.

We thus employ a generalized notion: metric-LDP [3], offering het-
erogeneous protection for different input pairs; the distinguishability
of outputs relies on the distance between inputs under a suitable dis-

tance metric. Metric-LDP is useful when the “semantics” of inputs

matter. It has been widely studied in NLP [23, 65] or others [4, 58].

Sanitizing sentence embeddings for keeping context. An ac-

tive line of research [23, 44, 65] “sanitizes” text by token-wise redac-

tion. These designs are non-contextualized since they process tokens
independently: perturbing token embeddings (i.e., real-valued high-
dimensional vectors) by random noise, then mapped back to tokens

via post-processing [23, 44], or directly sampling “replacements”

from a discrete token universe (to avoid the dimensional curse) [65].

Yet, sanitized text, being human-readable, may still convey private

information. To keep context for maintaining utility, (sensitive) to-

kens could be sanitized to themselves or semantically-similar ones

with high probabilities [65]. Qu et al. [44] further study fine-tuning

on noisy token embeddings, yet the task accuracy is far from that

of sanitized text [23, 65] even at a low privacy regime (𝜖 = 125), e.g.,
0.56 vs. 0.83 for SST-2. In short, they only ensure metric-LDP at the

token level [23, 44, 65] and lose the context. Directly extending them
to the sequence level degrades privacy by the sequence length 𝑛.

Sentence embeddings, “aggregated” from 𝑛 token embeddings at

the output of LMs, have much lower dimensions, e.g., 768 vs. >110M
for gradients (or 𝑛 × 768 for token embeddings) of BERT-base [15].

Sanitizing them for sequence-level metric-LDP is more feasible since

the noise magnitude is scaled with the dimensionality; the signal-

to-noise ratio becomes much smaller when perturbing gradients

locally for the same privacy level. As a side benefit, it can effectively

mitigate embedding-based attacks under the same threat models

as [48] (see Section 4.4), e.g., inverting raw text or inferring sensitive

attributes from (noisy) embeddings. It also naturally extends protec-

tion to inference. Efficiency-wise, it consumes less time and memory

than DP-SGD computing and storing per-example gradients.

Sentence embedding normalization is beneficial for fine-tuning

NLP pipelines (e.g., avoiding overfitting, faster convergence [2, 66]).
It implies a consistency constraint: The sanitized embeddings should

be normalized like the raw ones. To our knowledge, we are the first

to explore consistency in sanitizing sentence embeddings for fine-

tuning/inference of NLP pipelines, although it is a common tool in

simpler traditional statistical analytics [26, 55] under LDP. We in-

vestigate two complementary approaches: i) directly sampling noisy

“replacements” from a normalized sphere using the Purkayastha

mechanism
2
[58] or ii) post-processing the outputs of the general-

ized planar Laplace (PL) [60] that has been used to perturb token

embeddings [23, 44] (see Section 3.2). Yet, they still suffer from the

“curse of dimensionality,” e.g., the Purkayastha mechanism has only

been shown to work well for 2- or 3-d spatial/temporal data [58],

while sentence embeddings can easily be 768-d (or higher) [15].

Techniques formitigating the curse by dimension reductionwhile

not hurting much utility are instrumental in many fields. Random

projection [60] is an efficient approach, which samples a random

fixed linear map (from certain distributions) for reducing feature

2
As a metric-based notion, the sampling probability decreases exponentially with

some distance metric as an exponential mechanism variant in a token-level metric-LDP

work [65] (angular vs. Euclidean). An important difference is that ours targets a con-
tinuous space and needs a different normalization factor in its probability distribution.
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Figure 1: Sanitizing sentence embeddings (and labels) under
local DP for BERT-based NLP pipelines

vectors’ dimensions while keeping their raw geometry. We adapt

it to NLP pipelines (Figure 1) by making it trainable for potential
better utility, coupled with an extra post-processingmap to “restore”

the dimension to make it compatible with the raw pipelines again.

Sanitizing labels for full protection. Typically, each individual

has a sequence-label pair for fine-tuning. To fully protect every pair

(cf. DP-SGD only “hides” any single pair among the entire training

data), we also let individuals sanitize their labels locally. Since labels

are often discrete, we can use randomized response (RR) [56] if the

label space is small; otherwise, we additionally prune the label space

with prior knowledge (e.g., obtained via multi-stage training [24])

before invoking RR. For better utility, such label sanitization is

not mandatory if the labels are deemed non-sensitive (e.g., binary
classification tasks) or even absent for self-supervised learning.

1.2 Our Contributions
Motivated by the inherent shortcomings of gradient perturbation

(e.g., the poor generalizability to gigantic models and the vulner-

ability to attacks beyond MIAs), we initiate a study of sanitizing

sentence embeddings for fine-tuning/testing LM-based pipelines.

i) We achieve metric-LDP [3] to enable heterogeneous protection.

We impose a consistency constraint on our sanitization, borrowing

the wisdom of normalizing sentence embedding for robustness [2].

ii) We propose two instantiations from the Euclidean and angular

distances. The first one is brand new in NLP, which utilizes the

Purkayastha mechanism (previously used for only 2-/3-dimensional

data [58]). The other is upgraded from the generalized planar

Laplacemechanism [60] with post-processing. We strategically apply

two trainable maps in pipelines to mediate the dimension curse.

iii) We are the first to protect labels (for fine-tuning) with LDP, in

contrast to prior arts [23, 44, 65]. We empirically show that ran-

domized response (or its improvement [24]) generally works well.

iv) We conduct experiments on three representative NLP tasks.

The results show that our LDP approaches with suitable parameters

can even achieve the non-private task accuracy, outperforming DP-

SGD, and effectively thwart privacy threats to embeddings [41, 48].
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2 PRELIMINARIES
2.1 Pre-trained LMs and Sentence Embeddings
Modern LMs, such as BERT [15] and GPT [45], are often pre-trained

on enormous (public) self-labeled corpora, e.g., Wikipedia. They are

built atop the transformer architecture [53], enabling them to have

dozen of identical layers/encoders with huge capacity. Later, they

can be adapted to various NLP tasks (e.g., sentiment analysis and

question answering) by fine-tuning on much smaller, task-specific

datasets. Such a pretrain-then-finetune paradigm avoids training a

new model for each task from scratch while achieving remarkable

performance gains compared to approaches without using LMs.

Let𝑋 = ⟨𝑥𝑖 ⟩𝑛𝑖=1 be a sequence of 𝑛 tokens or sub-words, typically

obtained by splitting a sentence by theWordPiece tokenization [61].

With an embedding layer stacked before LMs, 𝑥𝑖∈[𝑛] is first mapped

to a vector in R𝑚 , then processed inside LMs by per-layer (query,

key, and value) weights in R𝑚×𝑚
. The hidden embedding matrix in

R𝑛×𝑚 is reduced to a sentence embedding Φ(𝑋 ) ∈ R𝑚 at the LM

output. The details of transformer-based LMs can be found in [53];

we just treat LMs as a black-box “oracle” to extract sentence-level

features for fine-tuning/testing different downstream task layers.

This work studies BERT [15] as an example for its popularity [65].

BERT employs a masked language modeling objective to predict

randomly “masked” tokens in a sequence conditioned on all the oth-

ers during pre-training, allowing it to capture bidirectional contexts

and outperform non-contextualized token embedding models (e.g.,
GloVe [43]) or unidirectional GPT [45]. For BERT, common reducing

methods to derive Φ(𝑋 ) include mean pooling [46] (computing the

average of 𝑛 hidden embeddings) or just taking the last embedding

corresponding to a special token [CLS] for classification [43].

2.2 (Local) Differential Privacy
DP [16] is a rigorous privacy guarantee, regardless of an adversary’s

auxiliary knowledge. It ensures that a randomized mechanismM
behaves similarly on any two neighboring datasetsX ≃ X′

differing

in only one individual’s contribution (e.g., a sequence). Formally:

Definition 1. Let 𝜖 ≥ 0, 0 ≤ 𝛿 ≤ 1 be two privacy parameters.
M fulfills (𝜖, 𝛿)-DP, if ∀X ≃ X′ and any output set O ⊆ Range(M),

Pr[M(X) ∈ O] ≤ 𝑒𝜖 · Pr[M(X′) ∈ O] + 𝛿.

If 𝛿 = 0, then we say thatM is 𝜖-DP or pure DP.

There are two popular DP settings, central and local. In central

DP [16], a trusted curator can access all individuals’ raw data, pro-

cess the data by M with random noise for DP, and release the

noisy outputs. Local DP (LDP) [27] eliminates the curator by letting

individuals perturb their data locally before being shared: It offers

stronger protection but makes analytics on noisy data less accurate.

Definition 2. Let 𝜖 ≥ 0 be a privacy parameter.M is 𝜖-LDP, if
for any two private inputs 𝑋,𝑋 ′ and any output set O ⊆ Range(M),

Pr[M(𝑋 ) ∈ O] ≤ 𝑒𝜖 · Pr[M(𝑋 ′) ∈ O] .

𝜖-LDP offers homogeneous protection for all input pairs, which

may be too “stringent” in some scenarios: No matter how unrelated

𝑋 and𝑋 ′
are, the output distributions should be statistically similar

for small 𝜖 values, thus rendering the noisy outputs useless.

2.2.1 Generalization with Distance Metrics. To customize heteroge-

neous privacy guarantees for different pairs of inputs (considering

their “actual values”), we resort to LDP on metric spaces [3, 12].

Definition 3. Let 𝜖 ≥ 0 be the privacy parameter, and 𝑑 be a
suitable distance metric for the input space. M satisfies 𝜖𝑑-LDP, if
for any two inputs 𝑋,𝑋 ′ and any output set O ⊆ Range(M),

Pr[M(𝑋 ) ∈ O] ≤ 𝑒𝜖 ·𝑑 (𝑋,𝑋 ′ ) · Pr[M(𝑋 ′) ∈ O] .

For metric-based LDP, the indistinguishability level of output

distributions is now bounded by 𝜖 times the distance between their

respective inputs, and themeaning of 𝜖 changes for different choices

of 𝑑 . To exploit 𝜖𝑑-LDP, 𝑑 needs to be carefully instantiated (see Sec-

tion 3.2), e.g., 𝐿2-distance for geo-indistinguishability (i.e., different
privacy levels within different protection radii).

Interpretation as 𝜖-LDP. For a function 𝑓 : X → Y, its sensitivity

w.r.t. a distance metric 𝑑 on the space Y is defined as

Δ = Δ𝑑 𝑓 := max

∀𝑋,𝑋 ′∈X
𝑑 (𝑓 (𝑋 ), 𝑓 (𝑋 ′)) .

We useM◦ 𝑓 to denote the sequential function executionM(𝑓 (·)).

Fact 1. Let M𝜖 be an 𝜖𝑑-LDP mechanism on the space Y with a
metric 𝑑 , and 𝑓 : X → Y be a function with 𝑑-sensitivity Δ. Then,
the composition M𝜖/Δ ◦ 𝑓 satisfies 𝜖-LDP [12, Fact 5].

(L)DP and its generalization have two desirable properties: free
post-processing and composability. The former means that perform-

ing arbitrary computations on the outputs of (L)DP mechanisms

incurs no extra privacy loss. The latter enables a modular design of

more complicated schemes from basic ones with 𝜖 as an additive

privacy “budget,” e.g., sequentially and adaptively running an 𝜖-DP

mechanism for 𝑘 times on the same input is at least 𝑘𝜖-DP [17].

2.2.2 Generalized Planar Laplace (PL) Mechanism. The PL mecha-

nism [4] is proposed to protect geolocation data in R2 for 𝜖𝑑2-LDP,
instantiated with the Euclidean metric 𝑑2. It first draws noise (i.e.,
two independent random values representing the radius and angle)

from a Polar Laplace distribution and then adds the noise back to

raw locations in the Cartesian system via a standard transformation.

To perturb data𝑋 ∈ R𝑚 for𝑚 ≥ 2, the follow-up [60] generalizes

the PL mechanism using additive noise 𝑍 ∈ R𝑚 from distribution

Pr(𝑍 ) ∝ exp(𝜖 · | |𝑍 | |2),

where | | · | |2 denotes the 𝐿2-norm. Pragmatically, 𝑍 can be obtained

by first drawing a uniform vector 𝑍 ′ ∈ R𝑚 with | |𝑍 ′ | |2 = 1, which

is then scaled by a magnitude 𝑙 from Gamma distribution Γ(𝑚, 1/𝜖).

2.3 Directional Statistics and Distributions
Directional statistics [33] works on vectors’ directions, independent

of their magnitudes. It can be identified by the universe of𝑚-d unit

vectors (for𝑚 ∈ N+), i.e., all points on the unit (𝑚 − 1)-sphere:

S𝑚−1 = {𝑋 ∈ R𝑚 : | |𝑋 | |2 = 1}.

We consider unimodal distributions PS on S𝑚−1
that are rotation-

ally symmetric about a given mean direction (or the mode [58])

𝜇 ∈ S𝑚−1
. To draw vectors from PS, it is easier to handle marginal
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distributions obtained by the tangent-normal decomposition; a ran-

dom vector 𝑌 ∈ S𝑚−1
is decomposed into two components, where

one is along 𝜇 and the other is along a tangential unit vector 𝜉 ⊥ 𝜇:

𝑌 = 𝑡 · 𝜇 +
√︁
1 − 𝑡2 · 𝜉, (1)

where 𝑡 = 𝜇⊤𝑌 and 𝜉 is uniformly distributed on subsphere S𝑚−2 ⊥
𝜇 due to the rotational symmetry. We can also re-write Eq. (1) as

𝑌 = cos𝜃 · 𝜇 + sin𝜃 · 𝜉, (2)

where 𝜃 = arccos (𝜇⊤𝑌 ) is the angular distance between 𝑌 and 𝜇.

Sampling𝑌 thus boils down to sampling 𝑡 (resp., 𝜃 ) from its mixture

(resp., angular) density as well as a uniform tangential vector 𝜉 ⊥ 𝜇.

PS has many instances, and we will use the Purkayastha one [58].

Definition 4. The Purkayastha distribution with mean 𝜇 ∈ S𝑚−1,
parameterized by a concentration value 𝜅 ≥ 0, has the density

Pur(𝜇, 𝜅) [𝑌 ] = 𝐶Pur (𝑚,𝜅) · exp (−𝜅 · arccos (𝜇⊤𝑌 )),
where𝐶Pur (𝑚,𝜅) is the normalization factor: 𝑆−1

𝑚−2 ·𝐹
−1
𝑚−2,−𝜅 (𝜋) with

𝑆𝑚−2 = 2𝜋
𝑚−1
2 Γ−1 (𝑚−1

2
) and 𝐹𝑚−2,−𝜅 (𝜋) =

∫ 𝜋

0
𝑒−𝜅𝑥 sin𝑚−2 (𝑥)d𝑥 .

The parameter 𝜅 specifies how closely 𝑌 drawn from Pur(𝜇, 𝜅) is
“concentrated” about 𝜇: the larger 𝜅, the higher the concentration.

Pur(𝜇, 𝜅) degenerates to the uniform distribution on S𝑚−1
if 𝜅 = 0.

3 OUR CONSTRUCTIONS
3.1 Overview
Suppose each individual holds a sentence-label pair (𝑋,𝑦) or only𝑋
for fine-tuning or testing BERT-based NLP pipelines at an untrusted
server. Naïvely redacting 𝑋 (e.g., removing personally identifiable

information, PII) is not enough for privacy [51]. We let individuals

separately sanitize sentence embedding Φ(𝑋 ) extracted by BERT

and (sensitive) 𝑦 for (metric-based) LDP guarantees before being

shared. It is in contrast to the conventional central-DP approach [1],

which perturbs gradients after centralizing data by a trusted curator.

Normalizing Φ(𝑋 ) is beneficial for fine-tuning/inference [2]. So,
we impose a consistency constraint for sanitizing Φ(𝑋 ) – the results

should also be normalized. We explore two solutions (Section 3.2.1-

3.2.2): one is to directly draw “replacements” from a distribution

defined on a sphere, which can be realized by the Purkayastha

mechanism [58] using the angular distance; the other is to post-
process the noisy embeddings output by the Euclidean-distance-

based PL mechanism [60]. However, both suffer from the “curse of

dimensionality” since the dimensionality of Φ(𝑋 ) is large (e.g., 768).
To address it, we add two trainable linear maps between BERT and

task layers (Figure 1): one for dimension reduction before adding

noise; the other for restoring the dimensionality to maintain utility.

For sanitizing (discrete) labels, we can resort to the randomized

response (RR) if the label space is small (which holds for most NLP

applications); otherwise, we first prune the label/output space using

prior, e.g., obtained by multi-stage training [24] (see Section 3.3).

3.2 Sentence Embeddings Sanitization
In BERT-based NLP pipelines, task layers (typically feed-forward

neural networks) are appended to BERT for, e.g., classification. For
every input (training/testing) sequence 𝑋 , a sentence embedding

Φ(𝑋 ) ∈ R𝑚 is extracted by BERT, capturing sentence-level features.

Prior arts [2, 66] suggest that normalizing Φ(𝑋 ) has many benefits,

such as stabilizing training, accelerating convergence, and avoiding

overfitting. So, we normalize sentence embeddings to the unit (𝑚 −
1)-sphere3: Φ(𝑋 ) ∈ S𝑚−1,∀𝑋, before inputting them to task layers.

Achieving stringent sequence-level 𝜖-LDP may introduce over-

whelmingly large noise, detrimental to the downstream task utility.

We thus propose to sanitize Φ(𝑋 ) for sequence-level 𝜖𝑑-LDP, which
requires us to instantiate a suitable metric 𝑑 for the input space.

3.2.1 Purkayastha Mechanism. Sentence similarity
4
is typically

measured by cosine similarity between sentence embeddings. Yet,

cosine similarity is not a suitable distance metric. For any Φ(𝑋 ) and
Φ(𝑋 ′) on S𝑚−1

, it is thus natural to consider their angular/surface

distance, which can be “converted” from cosine similarity:

𝑑∡ (Φ(𝑋 ),Φ(𝑋 ′)) = arccos(Φ(𝑋 )⊤ · Φ(𝑋 ′)) .
We then let 𝑑 (𝑋,𝑋 ′) = 𝑑∡ (Φ(𝑋 ),Φ(𝑋 ′)),∀𝑋,𝑋 ′

, where 𝑑 satisfies

all the axioms of a distance metric since Φ(·) is injective.
Moreover, we impose a consistency constraint: the noisy sentence

embeddings Φ̂(𝑋 ) should also be on S𝑚−1
to enjoy the normaliza-

tion benefits. To achieve this, we can directly sample “replacements”

Φ̂(𝑋 ) ∈ S𝑚−1
from certain PS (or take an extra post-processing step

on noisy outputs detailed in Section 3.2.2). Specifically, we apply the

Purkayastha mechanism [58]: sampling Φ̂(𝑋 ) from Pur(𝜇, 𝜅) with 𝜇
as the rawΦ(𝑋 ) and𝜅 as the privacy parameter 𝜖 . It ensures 𝜖𝑑-LDP

for input sequences (see Theorem 1). More importantly, the probabil-

ity of outputting Φ̂(𝑋 ) decreases exponentially with the increasing

angular distance between Φ̂(𝑋 ) andΦ(𝑋 ), which is useful for retain-
ing the utility (as in the exponential mechanism [35]): the shorter

the distance 𝑑∡ (Φ(𝑋 ),Φ(𝑋 ′)), the more semantically similar the

two sentences 𝑋,𝑋 ′
are; hence, the higher the task utility.

Theorem 1. Given a privacy parameter 𝜖 ≥ 0, our sanitization
outputting Φ̂(𝑋 ) ∼ Pur(Φ(𝑋 ), 𝜖) for Φ(𝑋 ) ∈ S𝑚−1 fulfills 𝜖𝑑∡-LDP
for sentence embeddings (or 𝜖𝑑-LDP for input sequences).

The proof is deferred toAppendixA. To efficiently sample Φ̂(𝑋 ) ∈
R𝑚 (e.g.,𝑚 = 768 for BERT-base), we exploit the tangent-normal

decomposition in Eq. (2). The key step is to draw 𝜃 from its density

PurArc(𝑚, 𝜖) [𝜃 ] = 𝐹−1𝑚−2,−𝜖 (𝜋) · sin
𝑚−2 (𝜃 )𝑒−𝜖𝜃 ,

where 𝐹𝑚−2,−𝜖 (𝜋) =
∫ 𝜋

0
sin

𝑚−2 (𝜃 )𝑒−𝜖𝜃 . This can be done using an
approximate inversion method [58, Algorithm 1]. We then need to

draw a tangential unit vector 𝜉 uniformly from S𝑚−2 ⊥ Φ(𝑋 ): In
practice, we first sample a random𝑚-dimensional vector 𝜉 (via the

standard normal distribution), then make it orthogonal to Φ(𝑋 ):
𝜉 = 𝜉 − (Φ(𝑋 )⊤ · 𝜉) × Φ(𝑋 ),

and normalize it to a unit one. Finally, the noisy replacement is

Φ̂(𝑋 ) = cos(𝜃 ) · Φ(𝑋 ) + sin(𝜃 ) · 𝜉 .
Empirically, we find that the noise “magnitude” 𝜃 ∼ PurArc(𝑚, 𝜖)

increases with𝑚 for fixed 𝜖 , incurring the “curse of dimensionality.”

The prior work only evaluates the feasibility of the Purkayastha

mechanism on spatial and temporal data with𝑚 = 2 or 3 [58]. For

our big𝑚 (e.g., 768 for BERT-Base), our pilot results show that task

models cannot converge even under a low privacy regime (𝜖 = 50).

3
A sphere 𝑟S𝑚−1

of radius 𝑟 > 1 or 𝑟 < 1 yields similar performance.

4
https://huggingface.co/tasks/sentence-similarity
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To escape from the curse, we introduce two linear maps𝑀1, 𝑀2 ∈
R𝑚

′×𝑚
(with𝑚′ ≪𝑚) between BERT and task layers. They are ran-

domly initialized (hence not necessarily inverse of each other) and

updated using gradients (like pipeline weights). We first use 𝑀1 to

transform each raw sentence embedding to𝑀1 ·Φ(𝑋 ) and then gen-

erate a replacement with smaller 𝜃 ′ ∼ PurArc(𝑚′, 𝜖). 𝑀1 mimics

random projection [60] to reduce dimension while approximately

preserving the raw pairwise distances. Our privacy is not affected

since the proof is dimension-independent. Meanwhile, our sampling

efficiency can be remarkably improved due to a much smaller𝑚′
.

Finally, we project each replacement back to S𝑚−1
via𝑀2 (no extra

privacy loss due to the free post-processing). With𝑀1 and𝑀2, we

almost hit the non-private task accuracy (to be shown in Section 4).

3.2.2 Normalized PL Mechanism. Since S𝑚−1
is still in a Euclidean

space, it is alsomeaningful to consider𝑑 as the Euclidean distance𝑑2

𝑑 (𝑋,𝑋 ′) = 𝑑2 (Φ(𝑋 ),Φ(𝑋 ′)) = | |Φ(𝑋 ) − Φ(𝑋 ′) | |2 .
To ensure sequence-level 𝜖𝑑2-LDP (which we formally assert below),

one can run the generalized PL mechanism [60] to perturb sentence

embeddings Φ(𝑋 ) by using additive noise 𝑍 ∈ R𝑚 as

Φ̂(𝑋 ) = Φ(𝑋 ) + 𝑍, with 𝑍 ∝ exp(𝜖 · | |𝑍 | |2) .

Theorem2. Given a privacy parameter 𝜖 ≥ 0, sanitizingΦ(𝑋 ) by
the generalized PL mechanism satisfies sequence-level 𝜖𝑑2-LDP.

The proof is similar to that of Theorem 1, whichwe omit here.We

note that prior arts [23, 44] also used the generalized PL mechanism

to perturb the embeddings of every token (in a sequence) but only

for token-level 𝜖𝑑2-LDP, which is weaker than our sequence-level

notion. Theoretically, upgradation for sentence-level LDP requires

scaling the privacy bound by the sequence length as (𝑛 · 𝜖𝑑2)-LDP.
Besides, they focus on simpler tasks than ours, e.g., mapping noisy

token embeddings back to text by nearest neighbor search [23].

Corollary 1. For any Φ(𝑋 ),Φ(𝑋 ′) ∈ S𝑚−1, 𝑑2 (Φ(𝑋 ),Φ(𝑋 ′)) ≤
𝑑∡ (Φ(𝑋 ),Φ(𝑋 ′)), so our PL-based sanitization is also 𝜖𝑑∡-LDP.

The noise magnitude drawn from Γ(𝑚, 1/𝜖) is also scaled by𝑚,

which can be reduced properly to𝑚′
by the linear transformation.

However, the task utility may still be undesirable since the noisy

embeddings are in the entire Euclidean spaceR𝑚
′
rather than S𝑚−1

,

i.e., the consistency is violated. As a remedy, we post-process Φ̂(𝑋 )
by normalizing it to S𝑚−1

without hurting our privacy guarantees,

leading to our normalized PL mechanismwith prior on the 𝐿2-norm.

3.3 Fine-tuning/Testing with(out) Label Privacy
We consider that an untrusted server starts fine-tuning from a raw,

public BERT checkpoint Φ(·). In each fine-tuning step, the server

chooses a user batch (of tunable size) to provide the latest Φ(·); the
valuable task layers are never disclosed to the users. Each user in the
batch can compute its sentence embedding Φ(𝑋 ), which is sanitized
by using either the Purkayastha or normalized PL mechanism (in

Section 3.2) to Φ̂(𝑋 ) for metric-LDP and then shared with the server.

Given the pairs of (Φ̂(𝑋 ), 𝑦) for a batch, when the label 𝑦 is

non-sensitive (e.g., just a single bit denoting positive/negative), the

server can then fine-tune entire pipelines without accessing the raw
sentences 𝑋 ; it lets the gradient back-propagate to update all the

parameters for better performance, albeit Φ(·) could be frozen.

Typically, an epoch refers to an entire transit of a training dataset

through the pipeline, i.e., every 𝑋 is used only once per epoch. The

number of epochs 𝑘 is a hyperparameter; we need to estimate the

overall privacy loss for 𝑘 times sanitization on the same 𝑋 . Given

the basic composition theorem [17], we have at least (𝑘𝜖)𝑑-LDP for

each user. Such a bound is almost optimal for small𝑘 (e.g., inference);
otherwise, one could derive a tighter bound via tailored privacy

accounting tools such as Rényi DP [37]. We leave it as future work.

3.3.1 Sanitizing Labels for LDP. When labels are deemed sensitive,

such as the PAC setting [13] and online advertising [24], we should

also sanitize them by a mechanism M𝑙 to preserve label privacy.

Formally, we propose label-LDP as a local version of label-DP [24].

Definition 5. Given a privacy parameter 𝜖 ≥ 0, M𝑙 is 𝜖-label-
LDP, if for any two labels 𝑦,𝑦′ and any output set O ⊆ Range(M𝑙 ),

Pr[M𝑙 (𝑦) ∈ O] ≤ 𝑒𝜖 · Pr[M𝑙 (𝑦′) ∈ O] .
For most NLP applications, e.g., bi-/multi-nary classification in

the GLUE benchmark [54], the size |y| of (discrete) label space is
often small. A simple yet effective instantiation of M𝑙 for discrete

data is randomized response (RR) [56] proposed decades ago. Con-

cretely, for a privacy parameter 𝜖 ≥ 0 and label space y, RR perturbs

a true label 𝑦 to itself 𝑦 = 𝑦 with the probability

Pr[𝑦 = 𝑦] = 𝑒𝜖/(𝑒𝜖 + |y| − 1),
or to ∀𝑦 ∈ y \ 𝑦 uniformly. With RR, we achieve 𝜖-LDP for labels.

When |y| is large, we employ the adapted RR [24], which exploits

a prior distribution p to prune the label space y to a smaller one y′.
The prior p can be obtained publicly, e.g., auxiliary labeled corpora

similar to the assembly of users’ data. If it is not available, one can

first bootstrap it from a uniform one and then progressively refine it

(by the previous round model outputs) via multi-stage training [24].

With p, one can estimate an optimal |y′ | – labels with top-|y′ | prior
probabilities to maximize the signal-to-noise ratio Pr[𝑦 = (𝑦 = 𝑦)].
The adapted RR with prior also ensures 𝜖-label-LDP.

Theorem 3. Let 𝜖1, 𝜖2 ≥ 0 be two privacy parameters, M be the
Purkayastha mechanism, and M𝑙 be the (adapted) RR. Sanitizing
Φ(𝑋 ) and 𝑦 respectively byM and M𝑙 satisfies (𝜖1𝑑∡ + 𝜖2)-LDP.

Due to the space issue, the proof is deferred to Appendix A.

3.3.2 Inference at the Server. With fine-tuned Φ(·), users only need
to sanitize their test sentence embeddings for inference. Aligning to

the noisy fine-tuning is beneficial for inference accuracy and can

also mitigate embedding-based attacks [41, 48] on test sequences.

Local inference (without any DP noise), as in DP-SGD, forces the

server to reveal its entire pipelines, losing its intellectual property

and incurring more user-side (time and storage) overheads.

3.4 Privacy Amplification by Shuffling
DP-SGD fine-tuning and our approaches with label privacy consider

different privacy models (approximate CDP vs. metric-LDP), which

are not directly comparable. The shuffle model is an “intermediate”

trust model [19] that gained significant interest for bringing the

best of both central and local models. It relies on a third party to

anonymize (or randomly shuffle) users’ sanitized embedding-label

pairs before being sent to the server. The anonymity “amplifies”

privacy without any extra noise addition, allowing us to claimmuch
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SST-2 IMDb QNLI

#train samples 67, 349 25, 000 104, 743

#test samples 872 25, 000 5, 463

Table 1: Statistics of the task datasets

stronger privacy guarantees of our metric-LDP approaches when

seen in the central model, with a Θ(
√
𝑁 ) amplification factor for a

total of 𝑁 users [19]. Tighter results are derived [21, 22] with a new

reduction analysis of Rényi DP parameters for the shuffled outputs.

For fair comparisons with DP-SGD under the shuffle model, we

should sanitize sentence embeddings by Gaussian noise [1] to elimi-

nate the metric factor induced by the Purkayastha or generalized PL

mechanism. It would also be interesting to explore adding Gaussian

noise to the hidden (rather than only sentence) embeddings output

by different layers inside LMs. We leave them as future work.

4 EXPERIMENTS
4.1 Experimental Setup
Our experiments are run over a cluster comprising Tesla P100 GPUs.

We implemented both Purkayastha and normalized planar Laplace

mechanisms for sanitizing sentence embeddings, as well as RR for

sanitizing labels using Python. We adopted BERT-base-uncased5

(from the Huggingface Transformers library in PyTorch) as our LM

checkpoint for fine-tuning given sanitized embedding-label pairs.

We also consider the non-private baseline without any DP noise.

Datasets.We employ three representative tasks that have been used

in differentially-private NLP [23, 29, 63–65]: i) Stanford sentiment

treebank (SST-2) [54], ii) Internet movie database (IMDb) [32], and

iii) Question-answering natural language inference (QNLI) [54]. All

are web-related: The first two are for positive/negative sentiment

classification of online movie reviews; the last one is to check if the

context distilled from Wikipedia contains the answer to a question.

They also have privacy risks, e.g., the authorship can be identified

by stylistic features like word frequencies; our approaches can be a

general remedy. We use their dev sets as the test sets since the “real”

ones are missing. Table 1 shows the size of training and dev sets.

In the following experiments, all the test sentence embeddings

are sanitized for alignment to those in fine-tuning. The utility metric

is accuracy w.r.t. the ground-truth labels of test sequences.

Hyperparameters. For all the tasks, we set the number of epochs

as 3, learning rate as 2 × 10
−5

, and batch size as 64. We keep others

(e.g., no weight and learning rate decay) default as literature [54].

4.2 Configuring Linear Map Dimensions
As𝑚 is fixed as 768 in BERT-Base [15],𝑚′

is the only tunable pa-

rameter of linear maps affecting performance. By setting 𝜖1 = 10 for

metric-LDP, Table 2 shows the task accuracy of the two sanitization

mechanisms for sentence embeddings and the non-private baseline

when tuning𝑚′
(without label privacy). The last line (𝑚′ = 768) is

the setting without dimension reduction. The noise scale decreases

as𝑚′
decreases; the accuracy of both two sanitization mechanisms

increases since the signal-to-noise becomes larger for a unit sphere.

Efficiency-wise, the noise sampling rates are also faster for smaller

𝑚′
. Nevertheless, the total fine-tuning time, dominated by matrix

5
https://huggingface.co/bert-base-uncased

computations in pipelines, keeps almost unchanged compared to the

non-private baseline (e.g., ∼74 seconds for SST-2). While, DP-SGD

fine-tuning is 10–100× slower than the non-private baseline [9].

Cautions. For most applications (e.g., multi/binary classification in

our experiments), such dimension reduction-then-ascension has a

limited impact on task accuracy without DP noise. But for a few

much more complicated tasks, we observe notable accuracy drops

when𝑚′
is very small (e.g., <10), probably because low-dimension

vectors cannot encode sufficient information for downstream tasks.

To balance everything, we set𝑚′ = 16, which yields the best accu-

racy comparable to the non-private baseline, for later experiments.

4.3 Task Accuracy with(out) Label Privacy
We first consider that the labels in all the tasks do not need pro-

tection. For sequence-level LDP, the prior art [36] suggests that

𝜖 < 10 indicates a strong privacy regime, 10 ≤ 𝜖 < 20 is moderate

privacy, and 𝜖 ≥ 20 is seen as weak privacy; so we tune our pri-

vacy parameter 𝜖1 from 1 to 12 for metric-LDP with 𝑑2 or 𝑑∡ . The

results of all three tasks are shown in Figure 2. The larger 𝜖1 leads

to better accuracy of both approaches. At a strong privacy regime

(e.g., 𝜖1 ≤ 4), the normalized Laplace mechanism outperforms the

Purkayastha one, e.g., by as much as 0.14 for QNLI; the Purkayastha

one will be slightly better for 𝜖1 > 8. Both designs can almost hit the

non-private accuracy (e.g., 0.93 for SST-2 at 𝜖1 = 12), much better

than simply “upgrading” token-level designs [23, 65] by 𝑛 = 128.

We then consider sanitizing labels to fully protect every individ-

ual’s training example (i.e., a sequence-label pair, vs. DP-SGD offers

example-level CDP). Since all the tasks are binary classifications, we

apply the randomized response (RR) for each label independently

(without pruning the label space by any prior). We tune 𝜖2 from 0.5

to 3 for label-LDPwhile fixing 𝜖1 = 8 for sequence-level metric-LDP.

The accuracy of all the tasks fine-tuned on sanitized sequence-label

pairs is shown in Figure 3, which only reduces by 0.01 to 0.19 with

small budgets for extra label privacy. A very recent work [63] re-

ports that DP-SGD achieves an averaged accuracy of 0.685 on four

tasks (including SST-2 and QNLI) using 𝜖 = 6.7 for example-level

central DP. Our approaches offer a promising direction to fine-tune

more accurate models while ensuring stronger LDP guarantees.

4.4 Defenses Against Embedding-based Attacks
As the recent taxonomy of attacks on embeddings [48], we consider

MIAs, embedding inversion, and sensitive attribute inference. Ad-

versarially tampering models (e.g., poisoning) is outside our scope.

MIAs. They often exploit that models may behave differently on the

training data versus never-before-seen data [10, 62]. We consider

sequence-level MIAs – whether a target sequence is in the sequence

ensemble. With targets, the adversary can issue queries to the black-
box fine-tuned pipeline for the prediction confidences/probabilities.

We employ two simple yet effective threshold-based attacks [49, 62],

comparable to the shadow-learning attack [47]. One treats those

with confidences larger than a threshold 𝜏 as training data [62]

since the confidence of predicting a training sequence as its truth

label should be close to 1. Similarly, the other exploits that the

entropy of prediction for a training sequence should be close to 0,

which can be further improved by encoding the truth labels [49].

https://huggingface.co/bert-base-uncased
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Reduced SST-2 IMDb QNLI

size𝑚′
PurMech LapMech Non-DP PurMech LapMech Non-DP PurMech LapMech Non-DP

16 0.9243 0.9209 0.9335 0.8777 0.8792 0.8912 0.9081 0.9046 0.9083

32 0.8853 0.8830 0.9243 0.8419 0.8511 0.8892 0.8770 0.8752 0.9081

64 0.8050 0.8326 0.9266 0.7827 0.7974 0.8878 0.8058 0.8237 0.9112

128 0.7534 0.7557 0.9243 0.7188 0.7358 0.8880 0.7230 0.7557 0.9099

256 0.6663 0.6789 0.9226 0.6350 0.6989 0.8895 0.6421 0.6837 0.9101

512 0.5103 0.6296 0.9289 0.5920 0.6492 0.8891 0.5056 0.6262 0.9134

768 0.5087 0.5524 0.9207 0.5532 0.5738 0.8905 0.5037 0.5842 0.9125

Table 2: Accuracy of the two mechanisms and non-DP baseline when tuning the dimension𝑚′ with 𝜖1 = 10 for metric-LDP
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Figure 2: Accuracy on sanitized sentence embeddings when tuning 𝜖1 for metric-LDP without label privacy
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Figure 3: Accuracy on sanitized embedding-label pairs when tuning 𝜖2 for label-LDP (with 𝜖1 = 8)

𝜖1
Entropy Confidence

PurMech LapMech PurMech LapMech

1 0.502 0.496 0.503 0.508

4 0.519 0.518 0.508 0.509

8 0.536 0.538 0.511 0.513

12 0.551 0.552 0.523 0.522

∞ 0.659 0.645

Table 3: Success rates of two MIAs on SST-2

We follow the pre-processing [64]: evenly splitting a dataset into

two subsets, one for setting 𝜏 and the other for reporting the success

rates. For easier attacks, we use extra tricks [59] (e.g., random drops

of tokens) to increase (resp. decrease) the prediction confidence

(resp. entropy) of training sequences.We evaluated the twoMIAs on

SST-2 (without label privacy) and summarize the results in Table 3.

For all choices of 𝜖 , the success rates of twoMIAs are reduced to∼0.5
(or random guessing), much smaller than the non-DP baselines.

Embedding Inversion Attacks. The attacks try to recover (un-

ordered) tokens {𝑥𝑖 }𝑖∈[𝑛] ⊆ 𝑋 , e.g., identity numbers [41], from the

sanitized sentence embedding Φ̂(𝑋 ). We use a two-step attack [48],

assuming a white-box adversary with the knowledge of the pipeline

weights and architecture (stronger than its black-box version [48]).

It maps Φ̂(𝑋 ) to a lower-layer embedding by a learned mapping

(e.g., linear least square models) and then selects a set of tokens

𝑋 ∗
to minimize the 𝐿2-distance between its lower-layer embedding

and the mapped one of Φ̂(𝑋 ). Embeddings from deeper layers are

more “abstract” and harder to be inverted; e.g., the recovery rates

(even without DP noise) were shown to approach 0 [48, Figure 2].

Attribute Inference Attacks. Apart from recovering exact tokens,

sensitive attributes (such as text authorship) that are inherent in 𝑋

(and independent of training objectives) may be inferred from Φ̂(𝑋 ).
As [48], we consider a black-box adversary who can collect a lim-

ited, auxiliary dataset D𝑎𝑢𝑥 of sequences labeled with sensitive

attributes. The set of all possible sensitive attributes (e.g., authors) of
interest is also known. The adversary can then treat the inference

as a downstream task: It trains a classifier on D𝑎𝑢𝑥 (like the noisy

fine-tuning in Section 3.3), which is used for prediction on Φ̂(𝑋 ).
We consider IMDb as D𝑎𝑢𝑥 with the film genres being sensitive

attributes. For the classifier, we train a three-layer neural network to

infer the film genres from sanitized embeddings of movie reviews

in SST-2. Table 4 shows that our two sanitization mechanisms can

“transform” the inference to a majority-class case that assigns all of
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action comedy drama horror Overall

Non-DP 0.78 0.836 0.404 0.455 0.659

PurMech (𝜖1 = 8) 1.0 0 0 0 0.276
LapMech (𝜖1 = 8) 1.0 0 0 0 0.276

Table 4: Success rates of sensitive attribute inference

the labels to the majority class (‘action’) in the target data, reducing

the overall success rate by ∼0.42 compared to the non-DP baseline.

5 RELATEDWORK
5.1 Privacy Risks in NLP
Song and Raghunathan [48] taxonomize embedding-based attacks

into three categories, covering a wider scope than their concurrent

work [41]: inverting partial raw text, inferring sensitive attributes

(e.g., authorship, gender) and membership (i.e., the is-in relationship
between victims and private training data). Several others [9, 10]

study training data “memorization” (a.k.a. membership inference)

given only black-box access to generative LMs. Such memorization

can even lead to more devastating attacks, e.g., extracting verbatim

training text [10]. Beguelin et al. [6] introduce differential scores
and rank for analyzing the “update” leakage to recover the new data

for updating/fine-tuning LMs. Incorporating DP (for generating

embeddings or training) to thwart these risks is thus vital. Model

extraction and active attacks (e.g., poisoning) are out of our scope.

5.2 Privacy-preserving Text Embeddings
Two lines of work study generating privacy-preserving text embed-

dings; one (including ours) resorts to DP, and the other is through

adversarial training. SynTF [57] synthesizes term-frequency (TF)

vectors by using the exponential mechanism (EM) [35] to sample a

replacement for each raw term in a document. However, TF vectors

capturing document-level statistics have limited applications (e.g.,
simple text mining tasks). Feyisetan et al. [23] apply the generalized
PLmechanism [60] to perturb non-contextualized token embeddings
for metric-LDP instantiated by 𝑑2 and further post-process them to

sanitized text [65] by nearest-neighbor search. Their follow-up [44]

can get noisy sequence representations but still from the token-wise

perturbation [23]. Instead, Lyu et al. [31] directly perturb BERT-

based sentence embeddings by the Laplace mechanism [17] for pure

LDP. All these works protect token/sentence embeddings only at

a weaker token level. A very recent work [36] incorporates EM to

sample a replacement of a document embedding, as an average of

all sentence embeddings, to ensure sentence-level privacy: hiding

the impact of any single sentence in a document. Yet, its core is

central DP, like DP-SGD. It also requires dedicated efforts to prepare

a candidate set of non-private document embeddings used in EM;

our “candidate” space can be the entire unit (𝑚 − 1)-sphere.
For adversarial-training-based schemes [14, 18, 30], a simulated

adversary is trained to infer any sensitive information jointly with a

mainmodel that tries tomaximize the adversary’s loss andminimize

the primary learning objective. The learned private representations

can effectively mitigate inference-time attacks [48], but they are not

general-purpose like DP ones since the learning goal is task-specific.

5.3 Training NLP Models with DP
DP-SGD [1]modifies themini-batch stochastic optimization process

by adding Gaussian noise to aggregated gradients in each training

step such that the final models are DP. An early attempt [34] trains

LSTM-based LMs by deploying DP-SGD in the federated learning

setting. By setting hyperparameters properly (e.g., mega-batch sizes)

and using DP-SGD with Adam optimizer, one can even pre-train

gigantic LMs privately but requires Google TPUs [5]. Yu et al. [64]
propose reparametrized gradient perturbation (RGP): It can perturb

“dimension-reduced” gradients with less noise, but it is costly due to

the reparameterization in every update andmakes training unstable.

The follow-up [63] addresses these two issues by deriving a small

number of new parameters (from, e.g., LoRA and Compacter) that

can be “plugged in” frozen LMs and running DP-SGD on them

without hurting much performance. Li et al. [29] propose a memory-

saving technique: ghost clipping, which allows running DP-SGD for

full fine-tuning without storing per-example gradients (as large as

LMs). Fine-tuning based on DP-SGD (or its more efficient variants)

is in great contrast to ours: perturbing larger gradients in back-

propagation (vs. smaller sentence embeddings in forward pass) and

offering central DP with a trusted party (vs. LDP without any trust).

Label-only DP is formally introduced by Chaudhuri and Hsu [13]

for private PAC-learners, later considered in deep learning [20, 24].

Ghazi et al. [24] perturb discrete labels by the adapted RR that uses

prior to prune the label space. The prior may be publicly available as

domain knowledge or obtained frommulti-stage training. A parallel

work [20] proposes two designs based on the Laplace mechanism

with Bayesian inference and the PATE framework [42]. Yet, label-

only DP has pitfalls: an attacker can de-noise perturbed labels [8].

6 CONCLUSION
The web is a text-centric environment, collecting text inputs and

providing large pre-trained LM-based NLP applications, e.g., Chat-
GPT. Their success requires gathering collective intelligence, but

severe privacy risks may hinder individual involvement. Sanitizing

text data locally to protect privacy thus becomes significant.

Naïvely removing common PII in text is not enough. Processing

tokens/words or their embeddings independently loses context. We

thus sanitize sentence embeddings that encode contextual informa-

tion. We build two sanitization approaches atop the Purkayastha

and generalized planar Laplace mechanisms, ensuring metric-LDP.

They can be integrated to modern LM-based NLP pipelines working

on (noisy) sentence embeddings. For better utility, we normalize em-

beddings for consistency and mitigate the “curse of dimensionality”

by strategic uses two extra trainable linear maps. To fully protect

training data, we also sanitize labels by the classic random response.

We conduct extensive experiments on three representative NLP

tasks. We also empirically evaluate how the linear-map size impacts

task accuracy. The results confirm that our sanitization approaches

are efficient, accurate, and effective in thwarting various privacy

attacks in practice. Altogether, our new perspective leads to a better

approach to deep neural network training with DP, challenging

the traditional wisdom perturbing gradients. As a new paradigm to

ensure LDP in both training and inference, there are many promis-

ing future directions for privacy-preserving deep learning research,

e.g., generalizing to (transformer-based) computer vision tasks.
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A MISSING PROOFS IN SECTION 3
Proof of Theorem 1. Let 𝑋,𝑋 ′

be any two sequences. The em-

beddings are Φ(𝑋 ) and Φ(𝑋 ′). For any possible output 𝑌 ∈ S𝑚−1
,

Pur(Φ(𝑋 ), 𝜖) [𝑌 ]
Pur(Φ(𝑋 ′), 𝜖) [𝑌 ] =

𝐶Pur · exp(−𝜖 · arccos(Φ(𝑋 )⊤ · 𝑌 ))
𝐶Pur · exp(−𝜖 · arccos(Φ(𝑋 ′)⊤ · 𝑌 ))

=
exp(−𝜖 · 𝑑∡ (Φ(𝑋 ), 𝑌 ))
exp(−𝜖 · 𝑑∡ (Φ(𝑋 ′), 𝑌 ))

= exp(𝜖 · (𝑑∡ (Φ(𝑋 ), 𝑌 ) − 𝑑∡ (Φ(𝑋 ′), 𝑌 )))
≤ exp(𝜖 · 𝑑∡ (Φ(𝑋 ),Φ(𝑋 ′)))
= exp(𝜖 · 𝑑 (𝑋,𝑋 ′)) .

After canceling out𝐶Pur, we can apply the triangle inequality of 𝑑∡ .

The last step is due to 𝑑 (𝑋,𝑋 ′) = 𝑑∡ (Φ(𝑋 ),Φ(𝑋 ′)). □

Proof of Theorem 3. Given any two sentence embedding-label

pairs (Φ(𝑋 ), 𝑦) and (Φ(𝑋 ′), 𝑦′), and any possible output (Φ̂(𝑋 ), 𝑦),
Pr[(M(Φ(𝑋 )) = Φ̂(𝑋 ),M𝑙 (𝑦) = 𝑦)]
Pr[(M(Φ(𝑋 ′)) = Φ̂(𝑋 ),M𝑙 (𝑦′) = 𝑦)]

=
Pr[(M(Φ(𝑋 )) = Φ̂(𝑋 )] · Pr[M𝑙 (𝑦) = 𝑦]
Pr[(M(Φ(𝑋 ′)) = Φ̂(𝑋 )] · Pr[M𝑙 (𝑦′) = 𝑦]

≤ exp (𝜖1 · 𝑑∡ (Φ(𝑋 ),Φ(𝑋 ′)) + 𝜖2).
The equality is due to two independent mechanisms M and M𝑙 .

The inequality is from Theorem 1 and the privacy proof of RR. □

B MORE EXPERIMENT RESULTS
Tables 5 and 6 supplement more MIA results; both show significant

success rate drops (with different 𝜖1) compared to the non-DP case.

𝜖1
Entropy Confidence

PurMech LapMech PurMech LapMech

1 0.499 0.502 0.501 0.501

4 0.509 0.508 0.505 0.502

8 0.514 0.513 0.509 0.511

12 0.522 0.524 0.518 0.520

∞ 0.634 0.611

Table 5: Success rates of two MIAs on IMDb

𝜖1
Entropy Confidence

PurMech LapMech PurMech LapMech

1 0.499 0.502 0.501 0.498

4 0.501 0.499 0.500 0.499

8 0.502 0.501 0.499 0.501

12 0.498 0.502 0.501 0.500

∞ 0.630 0.616

Table 6: Success rates of two MIAs on QNLI
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