Refereed Conference Papers
*: Equal Contributions, #: Corresponding Author
-
Practical Anonymous Two-Party Gradient Boosting Decision Tree
Chenyu Huang, Fan Zhang*, Minxin Du#, Sherman S. M. Chow, Huangxun Chen, Huaming Rao, Danqing Huang, Bo Qian, and Chen Peng
S&P 2026 (Cycle-1 AR: 13% = 118/925, To appear) -
Shared Spotlight Meridian: Sparse Distributed Pseudorandom Functions for Scalable Federated Learning
Youlong Ding, Peihua Mai*, Jingqi Zhang, Sherman S. M. Chow#, Minxin Du#, and Yan Pang
S&P 2026 (Cycle-1 AR: 13% = 118/925, To appear) -
OBLIVIATE: Robust and Practical Machine Unlearning for Large Language Models
Xiaoyu Xu, Minxin Du#, Qingqing Ye, and Haibo Hu#
EMNLP 2025 (Main Conference) -
SecEmb: Sparsity-Aware Secure Federated Learning of On-Device Recommender System with Large Embedding
Peihua Mai, Youlong Ding, Ziyan Lyu, Minxin Du, and Yan Pang
ICML 2025 -
Machine Unlearning of Pre-trained Large Language Models
Jin Yao, Eli Chien, Minxin Du, Xinyao Niu, Tianhao Wang, Zezhou Cheng, and Xiang Yue
ACL 2024 (Main Conference) [Code]
-
DP-Forward: Fine-tuning and Inference on Language Models with Differential Privacy in Forward Pass
Minxin Du*, Xiang Yue*, Sherman S. M. Chow, Tianhao Wang, Chenyu Huang, and Huan Sun
ACM CCS 2023 (CCS23a AR: 18% = 76/427) [Code]
-
Sanitizing Sentence Embeddings (and Labels) for Local Differential Privacy
Minxin Du, Xiang Yue, Sherman S. M. Chow, and Huan Sun
TheWebConf 2023 (AR: 19.5% = 365/1900) [Code] [Video] [PDF]
-
Encrypted video search: Scalable, modular, and content-similar
Yu Zheng, Heng Tian, Minxin Du#, and Chong Fu
MMSys 2022 (Best Student Paper) -
Differential Privacy for Text Analytics via Natural Text Sanitization
Xiang Yue*, Minxin Du*, Tianhao Wang, Yaliang Li, Huan Sun, and Sherman S. M. Chow
Findings of ACL-IJCNLP 2021 (see also at PPML@CRYPTO 2021) [Code] [Video]
-
Stargazing in the Dark: Secure Skyline Queries with SGX
Jiafan Wang*, Minxin Du*, and Sherman S. M. Chow
DASFAA 2020 (AR: 24.4% = 119/487)
Refereed Journal Papers
-
Shielding Graph for eXact Analytics with SGX
Minxin Du, Peipei Jiang, Qian Wang, Sherman S. M. Chow, and Lingchen Zhao
IEEE Transactions on Dependable and Secure Computing 2023
-
Secure Prediction of Neural Network in the Cloud
Minghui Li, Yuejing Yan, Qian Wang, Minxin Du, Zhan Qin, and Cong Wang
IEEE Network 2021
-
GraphShield: Dynamic Large Graphs for Secure Queries with Forward Privacy
Minxin Du, Shuangke Wu, Qian Wang, Dian Chen, Peipei Jiang, and Aziz Mohaisen
IEEE Transactions on Knowledge and Data Engineering 2020
-
ARMOR: A Secure Combinatorial Auction for Heterogeneous Spectrum
Yanjiao Chen, Xin Tian, Qian Wang, Minghui Li, Minxin Du, and Qi Li
IEEE Transactions on Mobile Computing 2019
-
Searchable Encryption over Feature-Rich Data
Qian Wang, Meiqi He, Minxin Du, Sherman S. M. Chow, Russell W. F. Lai, and Qin Zou
IEEE Transactions on Dependable and Secure Computing 2018
-
Privacy-Preserving Indexing and Query Processing for Secure Dynamic Cloud Storage
Minxin Du, Qian Wang, Meiqi He, and Jian Weng
IEEE Transactions on Information Forensics and Security 2018
-
Outsourced Biometric Identification With Privacy
Shengshan Hu, Minghui Li, Qian Wang, Sherman S. M. Chow, and Minxin Du
IEEE Transactions on Information Forensics and Security 2018
-
Privacy-Preserving Collaborative Model Learning: The Case of Word Vector Training
Qian Wang, Minxin Du, Xiuying Chen, Yanjiao Chen, Pan Zhou, Xiaofeng Chen, and Xinyi Huang
IEEE Transactions on Knowledge and Data Engineering 2018